
DREDGING FLOATERS

Starplast was born at the end of the year 2007. Since the very beginning, it has entered the rotational moulding market offering innovative solutions. The company's attention to details and the up-to-date quality of its products are what distinguishes Starplast from its competitors.

From the idea to the maintenance of the products, the Starplast technical and sales staff takes care of the whole production process, covering the entire territory.

Starplast has

RANGE To this day, it is the widest range of products and services for the treatment of

waste waters.

INNOVATION There is a constant study of customized and performing project solutions.

TECHNOLOGY Thanks to a constant study, plants and equipments are technologically advanced, as well

as the geometry and raw materials.

EXPERTISE The technical and sales staff is competent and constantly trained.

CERTIFICATIONS They are always aligned with both the National and the Foriegn regulations.

THE PRODUCTION AND TECHNOLOGY OF THE ROTATIONAL MOULDING

Starplast is leader in the production of plastic materials through the "rotational moulding" technology.

This method is specifically used to produce hollow artifacts like dredging floaters, for example. It consists of melting the polyethylene powder using hot air.

The hot air is thrown into hollow moulds which rotate on their two axes. The moulds are made up either of steel or sheet metal, and will give to the final product the desired shape and texture.

Today Starplast employs three high-technology rotational machines, which can print artifacts ranging to a diameter of 3,50 meters.

Innovation and enterprise, plus the drive towards the ambitious and customer-friendly aims, bring to the study of innovative processes and solutions. Through internal projects, Starplast aims at reducing times and costs, keeping a keen eye on

the environment.

TECHNICAL DEPARTMENT AND DESIGNING PROCESS

Starplast counts on a young and competent technical staff that customizes new projects using up-to-date softwares. Before the production, there is a testing phase.

If the staff gives the greenlight, the regular process can start: a specific mould will be created, samples will be produced, and the final project will be carried out.

CERTIFICATIONS AND QUALITY PROTOCOL

SINGLAND - VERTICA FINALE

TO THE STATE OF T

Since the beginning, Starplast has gained company certifications as a key quality factor on the global scale market. Starplast has both compulsory and optional certificates, which are very important image and credibility wise.

Compulsory company certifications are required by National regulations - i.e. safety and health procedures in the work environment.

The optional certifications that Starplast has gained are necessary for assessing the quality of the processes and products, both respectful of the environment, the safety and the people's health.

IMPORTANT: the dimensional values of the polyethylene artifacts created with the rotational moulding method may vary of +/- 3%.

When producing floaters, spot samples are picked to undergo the following tests:

VISUAL AND STRUCTURAL

control of the surface and thickness

DIMENSIONAL

measurement of the length and the diameter (internal and external)

MECHANICAL

installation on the alleged pipeline

Each conforming floater is labeled and classified as SUITABLE and ready to be despatched.

On the left, the image shows an example of floater testing table.

MODELS

L 550 / Ø est 450

L 700 / Ø est 800

L 700 / Ø est 960

L 700 / Ø est 1400

L 700 / Ø est 1400

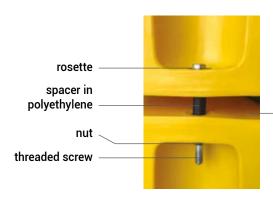
L 1200 / Ø est 750

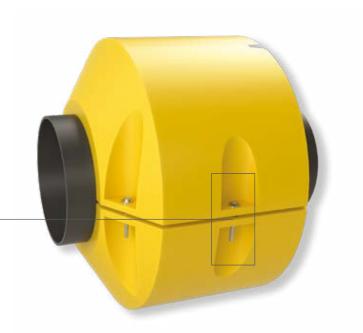
L 1200 / Ø est 850


L 1200 / Ø est 1250

L 1200 / Ø est 1500

L 1150 / Ø est 2200




L 1900 / Ø est 900

FLOATER COMPOSITION FOR POLYETHYLENE PIPELINES

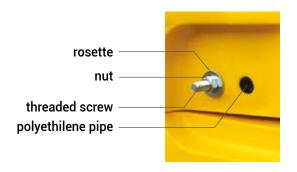
Starplast's dredging floater is made up of two semi-shells in polyethilene with an internal thickness of 12 millimiters.

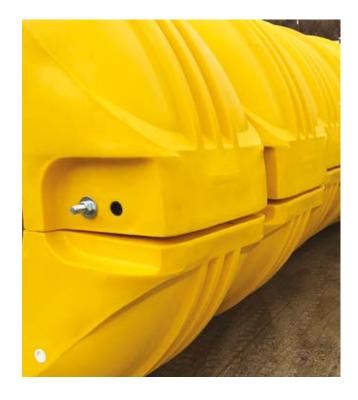
The two shells are bound together by fasteners of zinc plated steel (stainless steel is available on request) such as:

The hardware varies according to the floater type, which is linked to the pipe's diameter.

Starplast chose this method because it allows the floater to stick to the pipeline and to create a single body.

This makes the product more resistent to the elements and the currents it endures once in place and working.


FLOATER COMPOSITION FOR IRON PIPELINES


Starplast has specifically designed a floating system for iron pipelines.

Although this system is similar to the one suitable for the polyethylene pipelines, the floaters for iron pipelines are thicker and filled with high-density expanded polyurethane foam.

These two characteristics combined make the product more resistent to the solicitations and loads the product is to endure.

The two shells are bound together by fasteners such as:

EXPANDED POLYURETHANE FOAM

If the floater is to endure continuous weight and solicitations, or if the whole dredging unit is to be kept below the surface, the same floater must be filled with expanded polyurethane. Its density can span from 35 kg/m3 to 100 kg/m3.

Higer values of density are possible, but they have to be agreed upon with the Starplast engineering offices.

The expanded polyurethane is a mixture of Polyol and Isocyanate.

Through a specific machine, the two elements are injected into the floater. As soon as they come into contact, the two substances create a mixture that can reach 80° C.

During this process and until its complete cooling, the floater is kept inside a specific template to avoid the deformity that the reaction gases could cause.

Table of depths

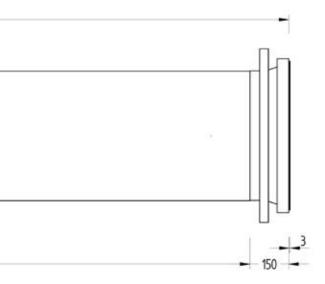
TECHNICAL CHART

	model	dimensional values							
icon		semi-shell							
		internal Ø	external Ø	Lu	shells	volume	total volume		
		mm	mm	mm	n.	lt	lt		
	DR GAL 24.125.400 CE	24	125	400	2	16	32		
	DR GAL 38.125.400 CE	38	125	400	2	15	30		
	DR GAL 50.400.400 CE	50	400	400	2	17	34		
	DR GAL 70.400.400 CE	70	400	400	2	17	34		
	DR GAL 95.400.400 CE	95	400	400	2	16	32		
	DR GAL 105.400.400 CE	105	400	400	2	16	32		
	DR GAL 55.45.110	110	450	550	2	32	64		
1 1 1 1 1	DR GAL 55.45.125	125	450	550	2	31	62		
18 80	DR GAL 55.45.140	140	450	550	2	30	60		
	DR GAL 55.45.160	160	450	550	2	29	58		
	DR GAL 70.80.180	180	800	700	2	121	242		
	DR GAL 70.80.200	200	800	700	2	119	238		
	DR GAL 70.80.225	225	800	700	2	109	218		
	DR GAL 70.80.250	250	800	700	2	106	212		
	DR GAL 70.100.280	280	960	700	2	182	364		
	DR GAL 70.100.315	315	960	700	2	177	354		
1.1	DR GAL 70.100.355	355	960	700	2	170	340		
	DR GAL 70.140.400	400	1.400	700	2	390	780		
	DR GAL 70.140.450 DR GAL 70.140.500	450	1.400 1.400	700 700	2	377	754 728		
	DR GAL 70.140.560	500 560	1.400	700	2 2	364 347	694		
	DII UAE 70.140.000	300	1.400	700		J41	004		
	DR GAL 120.75.180	180	750	1.200	2	215	430		
	DR GAL 120.75.225	225	750	1.200	2	208	416		
	DR GAL 120.75.250	250	750	1.200	2	203	406		
	DR GAL 120.85.280	280	850	1.200	2	216	432		
	DR GAL 120.85.315	315	850	1.200	2	157	314		
	DR GAL 120.85.350 DR GAL 120.85.400	355 400	850 850	1.200 1.200	2 2	197 180	394 360		
	DR GAL 120.125.400	400	1.250	1.200	2	516	1.032		
	DR GAL 120.125.450	450	1.250	1.200	2	500	1.000		
	DR GAL 120.125.500	500	1.250	1.200	2	478	956		
M. M. M.	DR GAL 120.125.560	560	1.250	1.200	2	450	900		
Mark Market	DR GAL 120.125.630	630	1.250	1.200	2	412	824		
	DR GAL 120.150.630	630	1.500	1.200	2	682	1.364		
	DR GAL 120.150.710	710	1.500	1.200	2	626	1.252		
	DR GAL 100.75.225 CR	1000	750	225	2	140	280		
	DR GAL 100.75.250 CR	1000	750	250	2	134	268		
	DR GAL 100.75.280 CR	1000	750	280	2	127	254		
	DR GAL 120.85.315 CR	1200	850	315	2 2	185	370		
	DR GAL 120.85.355 CR DR GAL 120.85.400 CR	1200 1200	850 850	355 400	2	170 155	340 310		
	DIT UAL 120.00.400 011	1200	000	400		100	310		
	DR GAL 190.75.500	500	750	1.900	2	165	330		
THE REAL PROPERTY.	DR GAL 190.90.560	560	900	1.900	2	262	524		
N. P. L.	DR GAL 190.120.710	1900	1200	710	2	550	1.100		
	DR GAL720.1700.1150	720	1700	1150	2	830	1660		
	DR GAL 910.2000.1050	910	2000	1050	2	1000	2000		
	DR GAL 850.2000.1150	850	2000	1150	2	1145	2290		
	DR GAL 950.2200.1150 DR GAL 910.2400.1150	950 910	2200 2400	1150 1150	2 2	1400 1810	2800 3620		
	DR GAL 1100.2400.1150	1100	2004	1150	2	1655	3310		
	₽11 WAE 1100.£700.1100	1100	2004	1100	-	1000	0010		

V = empty	S35 = foamed	S55 = foamed	S100 = foamed
	net	thrust	
		kg	
28	26	25	23
26	25	24	21
30	27	26	24
28	26	25	23
26	25	24	22
26	25	24	22
52	50	49	46
50	48	47	44
48	55	45	42
46	44	43	40
214	204	201	188
210	200	197	184
190	181	177	165
		177	160
184	175		
330	317	311	293
320	307	302	284
306	293	288	270
720	691	681	642
694	666	655	617
668	641	631	594
634	609	599	564
390	374	368	347
376	361	355	335
366	351	345	326
386	370	364	342
		247	226
268	253		
348	334	328	309
314	301	296	278
962	926	911	866
930	895	881	834
886	853	840	794
830	799	787	744
754	726	715	676
1.274	1.225	1206	1.139
1.162	1.117	1.100	1.039
244	234	228	216
232	220	214	205
218	208	205	192
320	305	300	283
290	277	270	256
260	248	243	230
272	260	252	240
456	420	428	404
1020	980	960	910
1540	1400		
1540	1480	-	-
1800	1730	-	-
2110	2020	-	-
2580	2480	-	-
3350	3212	-	-
3135	3015	-	-

PIPES-TECHNICAL CHART

	SDR 21 PN8					SDR 17 PN10						
external	bars 6 metres			bars 12 metres			bars 6 metres			bars 12 metres		
diameter	thickness	Ø internal	tot. weight	tot. vol.	tot. weight	tot. vol.	thickness	Ø internal	tot. weight	tot. vol.	tot. weight	tot. vol.
	mm	mm	kg/m	It	kg/m	lt	mm	mm	kg/m	lt	kg/m	lt
110	-	-	-	-	-	-	6,6	96,80	18,14	43,40	30,40	86,80
125	-	-	-	-	-	-	7,4	110,20	21,14	56,25	36,78	112,49
140	-	-	-	-	-	-	8,3	123,40	25,78	70,53	45,43	141,05
160	7,70	144,60	31,09	96,84	52,16	193,68	9,5	141,00	35,47	92,08	61,16	184,16
180	-	-	-	=	-	-	10,7	158,60	42,10	116,50	74,66	233,00
200	9,60	180,80	46,16	151,40	79,01	302,79	11,9	176,20	53,16	143,79	93,39	287,58
225	-	-	-	-	-	-	13,4	198,20	62,95	181,94	113,90	363,88
250	11,90	226,20	69,84	236,98	120,76	473,95	14,80	220,40	80,89	224,98	143,44	449,96
280	-	-	-	-	-	-	16,60	246,80	94,93	282,11	173,51	564,21
315	15,00	285,00	105,67	376,19	186,54	752,39	18,70	277,60	123,42	356,91	222,99	713,82
355	16,90	321,20	143,29	477,83	245,97	955,66	21,10	312,80	166,00	453,16	292,60	906,33
400	19,10	361,80	185,07	606,26	315,81	1.212,52	23,70	352,60	213,10	575,82	373,36	1.151,64
450	21,50	407,00	244,74	767,20	410,29	1.534,41	26,70	396,60	280,37	728,50	483,48	1.456,99
500	23,90	452,20	273,64	947,07	478,12	1.894,14	29,70	440,60	317,80	899,11	568,81	1.798,21
560	-	-	-	-	-	-	33,20	493,60	417,87	1.128,42	732,17	2.256,85
630	30,00	570,00	413,46	1.504,77	736,92	3.009,55	37,40	555,20	484,47	1.427,65	882,75	2.855,29
710	-	-	-	-	-	-	42,10	625,80	627,30	1.813,81	1.132,60	3.627,63
800	-	-	-	-	-	-	47,40	705,20	812,89	2.303,28	1.453,95	4.606,56
900	-	-	-	-	-	-	53,30	793,40	999,05	2.915,45	1.810,03	5.830,91
1.000	-	-	-	-	-	-	59,30	881,40	1.269,35	3.598,05	2.271,79	7.196,11



	SDR 11 PN16								
		a.	bars 6	metres	bars 12 metres				
ti	nickness	Ø internal	tot. weight	tot. vol.	tot. weight	tot. vol.			
	mm	mm	kg/m	It	kg/m	It			
	10,00	90,00	23,72	37,52	41,69	75,03			
	11,40	102,20	28,57	48,38	51,84	96,75			
	12,70	114,60	35,20	60,83	64,25	121,65			
	14,60	130,80	47,93	79,24	86,08	158,48			
	16,40	147,20	57,65	100,35	105,86	200,71			
	18,20	163,60	75,09	123,96	134,55	247,92			
	20,50	184,00	89,42	156,80	164,76	313,61			
	22,70	204,60	112,84	193,88	205,56	387,76			
	25,40	229,20	134,44	243,30	250,65	486,61			
	28,60	257,80	174,67	307,81	321,86	615,63			
	32,20	290,60	229,48	391,12	416,26	782,25			
	36,30	327,40	295,81	496,45	533,06	992,91			
	40,90	368,20	391,07	627,90	691,75	1.255,80			
	45,40	409,20	449,07	775,52	819,95	1.551,04			
	50,80	458,40	591,81	973,22	1.056,65	1.946,44			
	57,20	515,60	696,82	1.231,25	1.285,60	2.462,51			
	-	-	-	-	-	-			
	-	-	-	-	-	-			
	-	-	-	-	-	-			
	-	-	-	-	-	-			

LOCKING COLLAR

In extreme situations, the entire dredging line can endure significant solicitations.

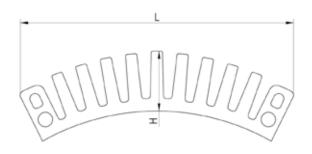
In such cases, putting collars on the pipeline is recommended.

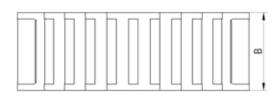
These electrowelded collars lock the center of the floater and avoid its sliding.

This locking system prevents a possible mutual crash of the floaters, but also supports the homogenous distribution of the pipeline weight.

The solicitations the dredging system has to endure can be of natural origin:

- wind (km/h)
- wave motion (m)
- water flow (m/sec)
- debris (kg)


The solicitations the dredging system has to endure can as well be of artificial origin:


- dredger speed and thrust (Kn)
- dredged material flow (kg)

- suitable for a polyethylene pipe with a diameter spanning between 160-1600 millimiters.
- in polyethylene 100 (PE4710).
- suitable for welding through optical control unit reader or manual input (25V).
- endowed with an axial tensile strength: 50kN for one Flex.

TECHNICAL CHARACTERISTICS

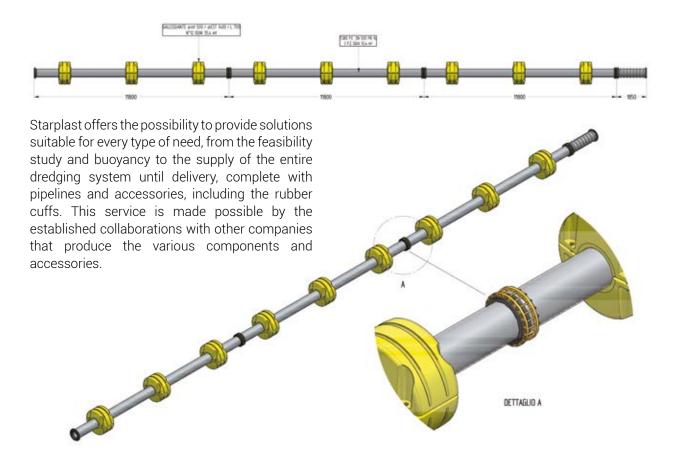
ANTI-SCREWING COLLAR

For the correct operation of the line and to avoid its overturning, it is essential that the floats maintain the ideal arrangement along the longitudinal axis of the tube.

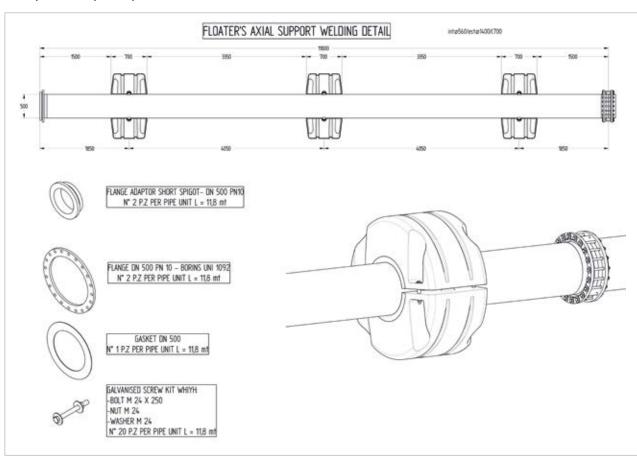
For this it is necessary to provide an appropriate locking system of the float on the tube.

1 BARS AND RODS IN HDPE

Previous solution: insertion of n. 02 electroweldable PE bars that assume the function of axial constraint

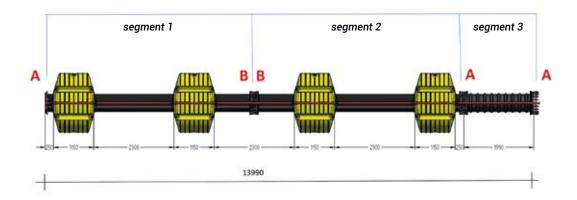


2 COLLAR IN HDPE

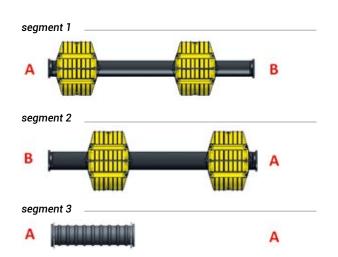

New solution: insertion directly on the tube n. 01 "collar" in HDPE welded by means of an LPDE wire, positioned in the center of the float, equipped with housing compartment for the same.

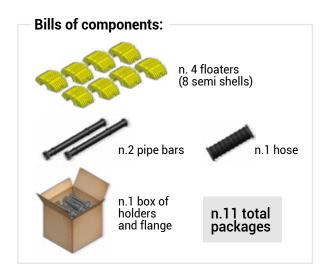
THE "TURN-KEY PROJECT"

Example of Starplast specifications

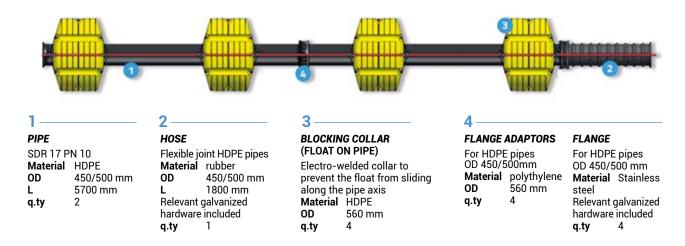


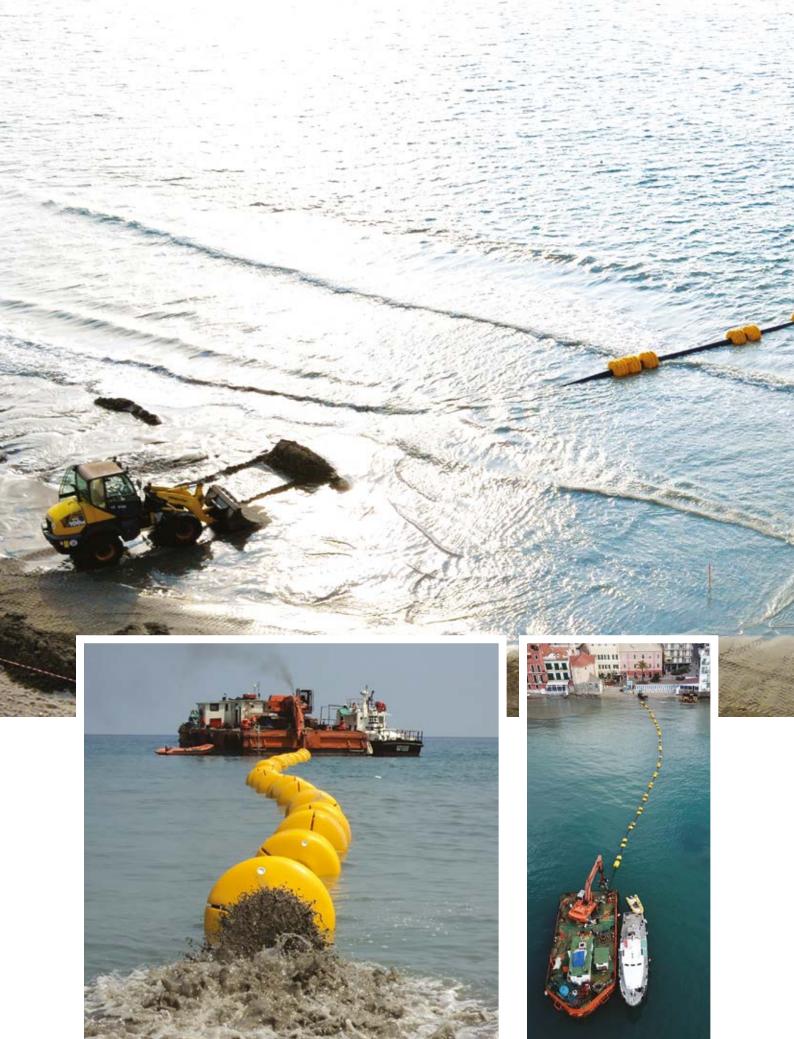
COMPLETE LINE OF DREDGING

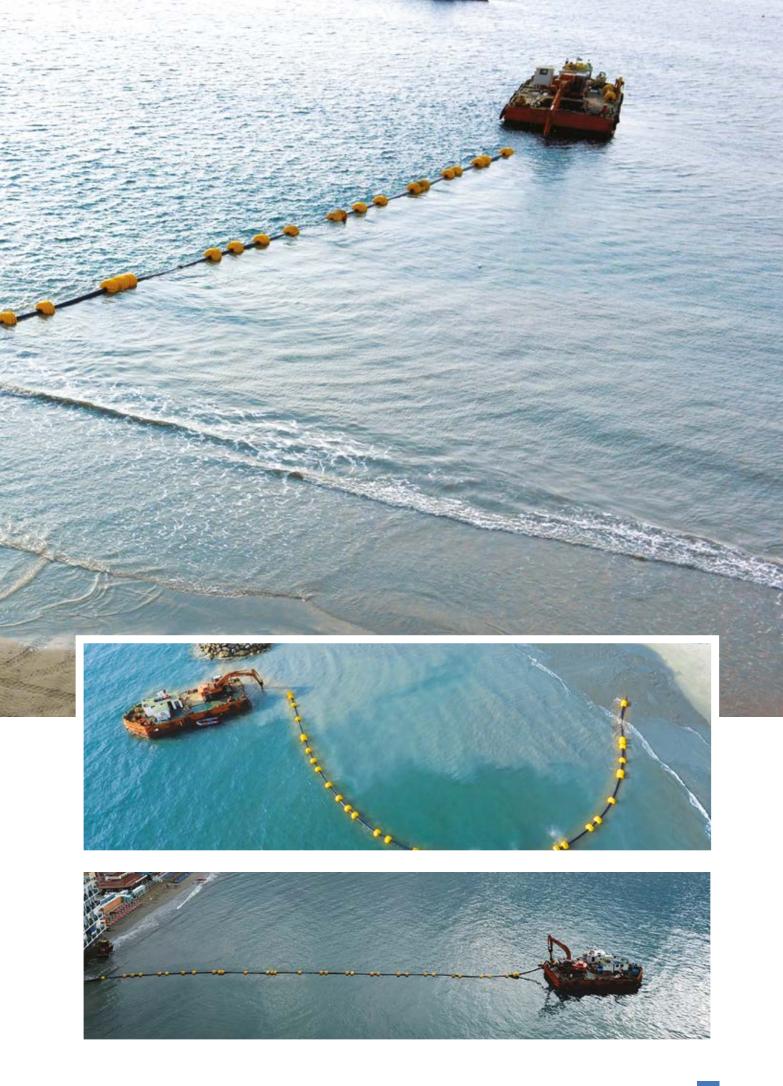

MINIMUM UNIT OF EQUILIBRIUM


The complete line proposed has been conceived as a multiple of the "minimum unit of equilibrium" which must:

- Be made according to the assembly diagram below
- Serve as an example and reference for calculations made




BOX MINIMUM UNIT



SINGLE COMPONENTS

AUTHORIZED DEALER									

+39 0722 079201

Starplast srl

info@starplastsrl.it www.starplastsrl.it

Via dell'Artigianato, 43 / 61028 Sassocorvaro Auditore (PU)

